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Abstract

Complex structures used in many fields of engineering are made up of simple structural elements like beams, plates, etc.

These structural elements, sometimes carry concentrated point masses at discrete points, and when subjected to severe

dynamic environment tend to vibrate with large amplitudes. Both the continuum and the finite-element solutions are

available in the open literature to tackle this coupled nonlinear problem, without concentrated point masses with particular

emphasis on the fundamental linear and nonlinear frequencies. However, for short beams and moderately thick plates, one

has to consider the effects of shear deformation and rotary inertia to evaluate their fundamental linear and nonlinear

frequencies. A commonly used method for obtaining the same is the energy method, or a finite-element analogue of the

same. In this paper the authors used a coupled displacement field method where in the number of undetermined coefficients

‘2n’ existing in the classical energy method are reduced to ‘n’, which significantly simplifies the procedure to obtain the

analytical solution. The large amplitude free vibration behaviour of the most commonly used uniform shear flexible

hinged–hinged and clamped–clamped beams with central point concentrated masses is studied here. This study reveals

some interesting aspects concerned with the problem considered. The numerical results in terms of the linear frequency

parameter and the ratios of nonlinear to linear radian frequencies for the uniform with a central point concentrated mass

are given in the digital form.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The importance of large amplitude free vibrations of commonly used structural elements like beams,
circular and rectangular plates, etc. is well recognized now because of the works of many researchers starting
from Woinowsky–Krieger [1]. Refs. [2–4] are some of the pioneering works, including both the continuum and
the finite-element methods, on the large amplitude free vibrations of beams. Secondary effects like shear
deformation and rotary inertia on the large amplitude free vibrations of beams are considered in Ref. [5],
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

A area of cross section
a central lateral displacement
am maximum amplitude
E Young’s modulus
G shear modulus
I area moment of inertia
k shear correction factor
L length of the beam
m mass of the beam per unit length
M concentrated mass
p(x) static load per unit length of the beam
q amplitude ratio
qm maximum amplitude ratio
r radius of gyration
T kinetic energy
u axial displacement at a point on the beam
U strain energy

w transverse displacement at a point on the
beam

W work done by the lateral load
W1 work done by the tension developed in

the beam
x axial coordinate of the beam
z lateral coordinate of the beam
a1, a2 as given in equations
b slenderness ratio
b shear rotation
ex axial strain
gxz shear strain
v Poisson ratio
c bending rotation
oL linear radian frequency
oNL nonlinear radian frequency
y total rotation
( )0 differentiation with respect to x

(�) differentiation with respect to time
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wherein a simplified finite-element formulations are used. Ref. [6] presents exhaustively, many investigations
on this topic available in the open literature till recently.

The recent work, reported in Refs. [7,8] on the development of coupled displacement field finite elements for
Timoshenko beam prompted the authors to develop a continuum analogue of the same using the energy
method, for the large amplitude free vibrations of Timoshenko beams considering the shear deformation and
rotary inertia. A successful preliminary attempt of the authors in this direction can be seen in Ref. [9].

To solve the large amplitude free vibration problem of shear flexible structural elements like short beams,
which are commonly used, ‘n’ admissible functions satisfying the essential boundary conditions, for the lateral
displacement field ‘w’ and another ‘n’ admissible functions for the total rotation y, which are compatible with
the admissible functions for ‘w’ are necessary to be used in the classical energy method. The Lagrangian is
minimized with respect to the ‘2n’ unknown coefficients, corresponding to the ‘2n’ admissible functions, to
obtain a system of coupled nonlinear differential equations in time, the solution of which is quite involved if
not impossible.

For some practically used beam configurations, like uniform hinged–hinged and clamped–clamped beams,
the large amplitude free vibration problem is generally studied with single term exact or nearly exact
trigonometric functions [10,11], where the main emphasis is to obtain the nonlinear fundamental
frequency. Even for this situation, one gets two nonlinear coupled differential equations in time, in terms
of the two undetermined coefficients corresponding to the two admissible functions. The solution of which, if
the beams are short, is not amenable to obtain simple and accurate closed-form solutions. On the other hand,
if one uses the coupled displacement field method [9], where in the lateral displacement ‘w’ and total
rotation ‘y’ are coupled by a coupling equation, only one undetermined coefficient remains and the use of the
energy method gives only one nonlinear ordinary differential equation in time. The coupling equation is
obtained from one of the differential equation governing the static equilibrium of the beam and is independent
of the boundary conditions. This final nonlinear temporal equation is of Duffing type with cubic nonlinearity
and can be solved either numerically or with a reasonable simplifying approximation, as in the case of the
harmonic balance method (HBM) [12]. The closed-form solution obtained through the use of HBM
is simple and elegant which gives quick and accurate solutions to the large amplitude free vibration
problem, with reference to the nonlinear fundamental frequency of the uniform Timoshenko beams as shown
in Ref. [9].
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In the present paper, the authors applied the coupled displacement field method for the large amplitude free
vibrations of uniform shear flexible hinged–hinged and clamped–clamped beams with a point concentrated
mass at the centre of the beam. The effect of the point concentrated mass is studied in terms of the linear
natural frequency and the ratios of nonlinear to linear radian frequencies, treating the point concentrated mass
and the slenderness ratios as parameters. The present study reveals some interesting aspects about the effect of
the symmetric point concentrated mass on the large amplitude free vibrations of uniform shear flexible
symmetric beam configurations, like the uniform hinged–hinged and clamped–clamped beams.

2. Coupling equation

The kinematics of the Timoshenko beam theory (Fig. 1) can be written as

uðx; zÞ ¼ zyðxÞ ¼ zð�cþ bÞ, (1)

wðx; zÞ ¼ wðxÞ, (2)

where u and w are the axial and transverse displacements at a generic point of the beam, z is the distance of the
generic point from the neutral axis, w is the transverse displacement and y is the total rotation anywhere on the
beam axis, c is the bending rotation (Euler–Bernoulli theory) and b is the shear rotation or shear strain
x

yz

a 

b 
a' 

b' 

b' 

a' 

ux = z(-ψ+�) = zθws ux

wb 

w = wb + ws

ψ =
dx

dwb

� = γxz

�

�

(a)

(c)(b)

ψ

Fig. 1. Displacement fields for Timoshenko Beam: a) Shear deflection of a beam; b) Shear and c) bending (Euler–Bernoulli).
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and x, z are the independent spatial variables. The axial and shear strains consistent with coordinate system
(Fig. 1) are given by

�x ¼ z
dy
dx

, (3)

gxz ¼
dw

dx
þ y. (4a)

The expression for gxz can also be obtained from Ref. [13] as

gxz ¼
dw

dx
þ

du

dz
¼

dw

dx
þ y. (4b)

It is to be noted here that Eqs. (4a) and (4b) are exactly the same confirming that the terminology used is
consistent with the coordinate system taken.

Now, the expressions for the strain energy ‘U’ and the work done W by the externally applied loads are
given by

U ¼
EI

2

Z L

0

dy
dx

� �2

dxþ
kGA

2

Z L

0

dw

dx
þ y

� �2

dx, (5)

W ¼

Z L

0

pðxÞwðxÞdx, (6)

where EI is the flexural rigidity, GA is the shear rigidity, k is the shear coefficient (taken as 5/6, valid for beams
of rectangular cross-section. For further discussion k, Timoshenko and Gere [14] may be referred, in the
present study, p(x) is the static lateral load per unit length acting on the beam, E is the Young’s modulus, G is
the shear modulus, I is the area moment of inertia, A is the area of cross-section, x is the axial coordinate and
L is the length of the beam.

Applying the principle of minimization of total potential energy, as

dðU�W Þ ¼ 0 (7)

the following equilibrium equations can be obtained [15]:

kGA
d2w

dx2
þ

dy
dx

� �
þ p ¼ 0, (8)

EI
d2y
dx2
� kGA

dw

dx
þ y

� �
¼ 0. (9)

Eqs. (8) and (9) are coupled equations and can be solved for obtaining the solution for the static analysis of
the shear deformable beams.

A close observation of Eq. (8) shows that it is dependent on the load term ‘p’ and Eq. (9) is independent of
the load terms ‘p’. Hence, Eq. (9) is used to couple the total rotation y and the transverse displacement w, so
that the two undetermined coefficients problem (for single admissible functions) becomes a single
undetermined coefficient problem and the resulting large amplitude free vibration problem becomes much
simpler to solve.
3. Coupled displacement field method

The coupled displacement field method is explained in detail in this section with reference to a short,
uniform hinged–hinged beam with a central point concentrated mass (Fig. 2a). To start with an admissible
function for y which satisfies all the applicable essential/natural boundary conditions and symmetric
condition is assumed in the beam domain, and the coupled lateral displacement w distribution using Eq. (9), is
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evaluated. y distribution along the length of the beam is assumed as

y ¼ a cos
px

L
, (10)

where ‘a’ is the nondimensional maximum central transverse amplitude of the beam, which is also the
nondimensional maximum transverse amplitude am in this case.

Eq. (9) can be rewritten as

dw

dx
¼ �yþ gy00, (11)

where

g ¼
EI

kGA
.

Substituting the function y in Eq. (11), we obtain the coupled displacement field for ‘w’, after integration as

w ¼ l sin
px

L
, (12)

where

l ¼ �
L

p
1þ

p
L

� �2 EI

kGA

� �
a. (13)

It may be noted here that because of the coupled displacement field ‘w’, the transverse displacement
distribution, contains the same undetermined coefficient ‘a’ as the y distribution and satisfies all the applicable
essential boundary and symmetric conditions

wð0Þ ¼ wðLÞ ¼
dw

dx

����
x¼L=2

. (14)
4. Large amplitude free vibrations

Large amplitude vibrations can be studied, once the coupled displacement field for the lateral displacement
‘w’, for an assumed ‘y’ distribution is evaluated using the principle of conservation of total energy at any
instant of time, neglecting damping, which states that

U þ T þW 1 ¼ Constant, (15)

where U is the strain energy, T is the kinetic energy, W1 is the work done by the tension developed in the beam
because of large amplitudes (deformations).

The expressions for U, T and W1 are given by

U ¼
EI

2

Z L

0

dy
dx

� �2

dxþ
kGA

2

Z L

0

dw

dx
þ y

� �2

dx, (16)

T ¼
rA

2

Z L

0

w
� 2

dxþ
rI

2

Z L

0

y
�2

dxþ
1

2
Mw
� 2
jx¼L=2, (17)

W 1 ¼
Ta

2

Z L

0

1

2

dw

dx

� �2

dx, (18)

where ‘r’ is the mass density, Ta is the tension developed in the beam because of large deformations, and ( � )
denotes differentiation with respect to time.
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The expression for Ta is obtained following Woinowsky–Krieger [1] as

Ta ¼
EI

2Lr2

Z L

0

dw

dx

� �2

dx, (19)

where ‘r’ is the radius of gyration and Ta is evaluated in terms of the amplitude parameter q ¼ a
r

� 	
.

Substituting the expressions for y and w, obtained from the coupled displacement field, the expressions for
U, T and W1 are given by

U ¼
EIp2a2

4L
1þ

p2EI

L2kGA


 �
, (20)

T ¼ a
�2 L

p

� �2 rAL

4
1þ

p2EI

L2kGA


 �2
þ

rAL

4

I

A

p
L

� �2
þ

M

2
1þ

p2EI

L2kGA


 �2( )
, (21)

W 1 ¼
EI

32r2
p
L

� �2
L a4 1þ

p2EI

L2kGA


 �2
. (22)

Substituting the expressions for U, T and W1 in Eq. (15) and simplifying, noting that I ¼ Ar2, we get the
following energy balance equation:

q
�2
þ a1q2 þ a2q4 ¼ constant (23)

with the following expressions for a1 and a2

a1 ¼
EI

p
L

� �4
1þ

p2E

kGb2


 �

m 1þ
p2E

kGb2


 �
1þ

2M

mL


 �
þ

p2

b2

� �, (24)

a2 ¼
EI

p
L

� �4
1þ

p2E

kGb2


 �2

8m 1þ
p2E

kGb2


 �2
1þ

2M

mL


 �
þ

p2

b2

( ). (25)

In Eqs. (24) and (25) E and G in the square brackets can be eliminated by the standard relation,

G ¼
E

2ð1þ uÞ
, (26)

where n is the Poisson ratio (taken as 0.3 in the present study) and b ¼ L/r, the slenderness ratio of the beam.
The Harmonic balance method discussed in the next section is used to solve Eq. (23) to obtain closed-form
expressions for the ratio of nonlinear to linear radian frequencies in terms of q and b.
5. Harmonic balance method

The direct numerical integration method (DNI) [10], proposed by the first author, can be used to solve Eq.
(23) to the desired degree of accuracy. However, for an elegant closed-form solution, one can advantageously
use the HBM which is briefly discussed in this section.

Differentiating Eq. (23), we obtain

€qþ a1qþ 2a2q3 ¼ 0. (27)
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This is the famous Duffing equation and is solved by assuming

q ¼ qm sin oNLt, (28)

where oNL is the nonlinear radian frequency and qm is the maximum amplitude ratio am/r.
Substituting Eq. (28) in Eq. (27), we obtain

�o2
NL sin oNLtþ a1 sin oNLtþ 2a2 q2

m sin3oNLt ¼ 0, (29)

where sin3oNL t can be written as

sin3oNLt ¼ 3
4
sin oNLt� 1

4
sin 3oNLt. (30)

From Eqs. (30) and (29), dropping the term corresponding to the third harmonic of oNL, Eq. (29) can be
written as

o2
NL ¼ a1 þ 3

2
a2q2

m. (31)

From Eq. (31), if qm ¼ 0, which corresponds to the case of linear free vibrations, the linear radian frequency,
oL ¼ oNL and

o2
L ¼ a1 (32)

and hence, the ratio of the nonlinear to the linear radian frequency is given by

oNL

oL

� �2

¼ 1þ
3

2

a2
a1

� �
q2

m. (33)

From Eqs. (24), (25) and (31), we obtain, after simplification,

oNL

oL

� �2

¼ 1þ
3

16
1þ

p2E

kGb2


 �
am

r

� �2
. (34)

Eq. (34) is an elegant form to calculate the ratios of o2
NL/o

2
L for various values of the maximum amplitude

and slenderness ratios of the beam and can be written, expressing G in terms of E, as

oNL

oL

� �2

¼ 1þ
3

16
1þ

2p2ð1þ uÞ

kb2


 �
am

r

� �2
. (35)

For very large b, i.e., for slender beams, where shear deformation can be neglected, Eq. (35) becomes

oNL

oL

� �2

¼ 1þ
3

16

am

r

� �2
(36)

which is a standard result [10].

6. Clamped–clamped beam

In this section, we consider the large amplitude free vibrations of a uniform, short clamped–clamped beam
(Fig. 2b) using the coupled displacement field method. As the proposed method is explained in detail for the
case of the hinged–hinged beam, the same is briefly discussed below.

In the case of the clamped–clamped beam, the admissible function for the total rotation is taken, as

y ¼ a sin
2px

L
, (37)

where ‘a’ has the same definition as given for the case of the hinged–hinged beam.
And the coupled displacement field ‘w’ is obtained, from Eq. (9), as

w ¼ a
L

2p
1þ

2p
L

� �2
EI

kGA

( )
cos

2px

L
� 1


 �
. (38)
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Fig. 2. Uniform beams with axially immovable ends with a central point concentrated mass: a) Hinged–hinged beam; b)

Clamped–Clamped beam.
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It is to be noted here that these two displacement fields satisfy the essential boundary conditions (four in
number) of the clamped–clamped beam at both the ends, and both the y and w expressions contain only one
undetermined coefficient ‘a’.

The expressions for U, T and W1 are the same as given in Eqs. (16)–(18) in terms of ‘w’ and y and their
derivatives. After substituting the coupled displacement field admissible functions for y and w, we get the
expressions for U, T and W1 after integrating, as

U ¼
EIL

4
a2 2p

L

� �2

1þ
2p
L

� �2
EI

kGA

" #
, (39)

T ¼
3mL

4
_a2 L

p

� �2

1þ
2p
L

� �2
EI

kGA

" #
1

4
þ

2M

3mL


 �
þ

I

3A

p
L

� �2( )
, (40)

W 1 ¼
EI

32r2
p
L

� �2
1þ

2p
L

� �2
EI

kGA

" #
. (41)

For the clamped–clamped beam, from Eq. (15), we obtain the same Eq. (23) and the corresponding
expressions for a1 and a2 are

a1 ¼ o2
L ¼

4EI p
L

� 	4
1þ 2p

L

� 	2 EI
kGA

h i
3m 1þ 2p

L

� 	2 EI
kGA

h i2
1
4
þ 2M

3mL

� 

þ I

3A
p
L

� 	2� � , (42)

a2 ¼
EI p

L

� 	4
1þ 2p

L

� 	2 EI
kGA

h i2
24mr2 1þ 2p

L

� 	2 EI
kGA

h i2
1
4
þ 2M

3mL

� 

þ I

3A
p
L

� 	2� � . (43)

Following the procedure given for the hinged–hinged beam, the ratio of the nonlinear to linear radian
frequency, after simplification of Eq. (33) with the corresponding values of a1 and a2 for the clamped–clamped
beam and expressing G in terms of E, is given by

oNL

oL

� �2

¼ 1þ
3

64
1þ

8p2 1þ uð Þ

kb2


 �
am

r

� �2
. (44)
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For very large slenderness ratio b, Eq. (44) becomes

oNL

oL

� �2

¼ 1þ
3

64

am

r

� �2
, (45)

which is a standard result for a slender, uniform clamped–clamped beam with ends immovable axially [10].
7. Numerical results and discussion

Using the coupled displacement field method proposed in this paper, the large amplitude free vibration
behaviour of uniform short beams with a central point concentrated mass, wherein the effects of shear
deformation and rotary inertia are considered. Two commonly encountered beams, namely, hinged–hinged
and clamped–clamped beams are studied in the present paper. As the point concentrated mass is located at the
centre of the beam, which is a symmetric configuration, only the translational inertia of the point concentrated
mass is taken into account in the present study. The rotary inertia of the point concentrated mass is zero as this
mass is located at the symmetric (central) point of the beam where the slope of the mode shape corresponding
to the fundamental frequency of the vibrating beam is zero. Widely used simple trigonometric admissible
functions, which represent the fundamental mode of the vibrating beam are considered here. The two
admissible functions contain same undetermined coefficient because of the coupled displacement field method
developed here in. The numerical results are presented in the digital form to facilitate the other researchers in
this field to compare their solutions directly for the present problem considered.

In the present study elegant closed-form expressions are developed for oNL=oL and for oL. It is very
interesting to note that expressions for oNL=oL are independent of the point concentrated mass (mass
parameter) and depends only on the slenderness ratio and the amplitude ratio. However, oL, the linear
fundamental radian frequency, is dependent on the mass parameter and slenderness ratio, and consequently
oNL, the nonlinear fundamental radian frequency is also dependent on the mass parameter and slenderness
ratios. Further, for a given slenderness ratio both the values of oL and oNL are increased by a same
multiplying factor, which is dependent on the amplitude ratio and hence the ratios oNL=oL are independent of
the mass parameter and are dependent on the slenderness and amplitude ratios.

Since the ratios of oNL=oL are independent of the mass ratio, the values of oL for hinged–hinged are given
first in Table 1 and for clamped–clamped beam are given in Table 2 for various mass and slenderness ratios. In
Table 3 the ratios of oNL=oL are given for the hinged–hinged beam and the same are give in Table 4 for
clamped–clamped beam for different amplitude and slenderness ratios. Comparison of the present results with
those available in the open literature are made wherever possible, to show the efficacy of the present proposed
method and it is observed that the agreement is good.
Table 1

(lf)
1/2 Values for a uniform shear flexible hinged–hinged beam

M/mL b Slender beam b-N

10 25 50 100 500

0 8.3913 9.5667 9.7906 9.8496 9.8688 9.8696

(8.3875)a (9.5666) (9.7903) (9.8494) (9.8686) (9.8696)b

0.25 6.9746 7.8297 7.9991 8.0435 8.0579 8.0585

0.5 6.0161 6.7887 6.9296 6.9664 6.9784 6.9787

0.75 5.3961 6.0764 6.1992 6.2313 6.2417 6.2421

1 4.9353 5.5496 4.9098 5.6885 5.6978 5.6982

2 3.8373 4.3028 4.3852 4.4066 4.4135 4.4138

3 3.2484 3.6380 3.7066 3.7244 3.7361 3.7361

4 2.2484 3.2091 3.2691 3.2846 3.2897 3.2949

5 2.5952 2.9032 2.9571 2.9711 2.9756 2.9804

aValues given in the parentheses are taken from Ref. [15] for b ¼ 10–500.
bValues given in the parentheses are taken from Ref. [16] for b-N.
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Table 2

(lf)
1/2 Values for a uniform shear flexible clamped–clamped beam

M/mL b Slender beam b-N

10 25 50 100 500

0 14.6902 20.3931 22.0992 22.6161 22.7914 22.7969

(15.0532)a (20.6809) (22.1991) (22.6385) (22.7860) (22.7969)b

0.25 8.7703 11.9982 12.8366 13.0764 13.1561 13.1595

0.5 6.8053 9.3029 9.9463 10.1298 10.1907 10.1933

0.75 5.7559 7.8656 8.4073 8.5615 8.6127 8.6149

1 5.0783 6.9385 7.4151 7.5507 7.5957 7.5976

2 3.6973 5.0504 5.3960 5.4941 5.5267 5.5281

3 3.6976 4.1652 4.4498 4.5306 4.5575 4.5586

4 3.0499 3.6256 3.8732 3.9434 3.9668 3.9677

5 2.6549 3.2529 3.4749 3.5379 3.5588 3.5596

aValues given in the parentheses are taken from Ref. [15] for b ¼ 10–500.
bValues given in the parentheses are taken from Ref. [17] for b-N.

Table 3

oNL/oL Values for a uniform shear flexible hinged–hinged beam

am/r b

25 50 100 500 -N

Present

study

DNI

[10]

Present

study

DNI

[10]

Present

study

DNI

[10]

Present

study

DNI

[10]

Present

study

DNI

[10]

FEM

[18]

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2 1.0039 1.0039 1.0038 1.0038 1.0038 1.0038 1.0037 1.0037 1.0037 1.0037 1.0037

0.4 1.0156 1.0156 1.0151 1.0151 1.0149 1.0149 1.0149 1.0149 1.0149 1.0149 1.0148

0.6 1.0348 1.0347 1.0336 1.0335 1.0333 1.0332 1.0332 1.0331 1.0332 1.0331 1.0331

0.8 1.0611 1.0608 1.0590 1.0588 1.0585 1.0582 1.0583 1.0581 1.0583 1.0580 1.0581

1.0 1.0940 1.0933 1.0905 1.0902 1.0900 1.8940 1.0897 1.0892 1.0897 1.0892 1.0892

2.0 1.3368 1.3313 1.3264 1.3212 1.3237 1.3186 1.3229 1.3178 1.3229 1.3178 1.3178

3.0 1.6645 1.6501 1.6457 1.6318 1.6409 1.6272 1.6394 1.6257 1.6394 1.6257 1.6257

4.0 2.0366 2.0116 2.0092 1.9850 2.0023 1.9783 2.0001 1.9761 2.0000 1.9760 1.9761

5.0 2.4328 2.3968 2.3969 2.3619 2.3879 2.3531 2.3850 2.3506 2.3848 2.3501 2.3502
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Table 1 gives the values of the fundamental frequency parameter, defined as

lf ¼
mo2

LL4

EI


 �1=2
,

for a uniform shear flexible hinged–hinged beam for several values of the central mass ratios defined as
M ¼M=mL
� 


. It can be seen from this table that the frequency parameter lf is significantly affected in
the presence of M even for the value of M is as low as 0.25 irrespective of the values of the slenderness ratios,
defined as b ¼ L=r

� 	
, of the beam considered. However, for higher values of M the decrease in the value of lf

is not as significant as in the initial lower values of M. The values of lf, for M ¼ 0 for b ¼ 25–500 and for b-
N for this beam configuration are matching very well with the values given in Refs. [15,16], respectively.

For the case of clamped–clamped uniform, the trend of the variation of lf, for any given b, with M is similar
to that of the hinged–hinged beam, as can be seen in Table 2. In this case it may be noted that for the initial
small values of M the reduction in the frequency parameter is much higher for this beam configuration
compared to the hinged–hinged beam. But for higher values of M the trend is the same as seen for the
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Table 4

oNL/oL Values for a uniform shear flexible clamped–clamped beam

am/r b

25 50 100 500 -N

Present

study

DNI

[10]

Present

study

DNI

[10]

Present

study

DNI

[10]

Present

study

DNI

[10]

Present

study

DNI

[10]

FEM

[18]

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

0.2 1.0011 1.0011 1.0010 1.0010 1.0009 1.0009 1.0009 1.0009 1.0009 1.0009 1.0009

0.4 1.0045 1.0045 1.0039 1.0039 1.0038 1.0038 1.0037 1.0037 1.0037 1.0037 1.0036

0.6 1.0100 1.0100 1.0088 1.0088 1.0085 1.0085 1.0084 1.0084 1.0084 1.0084 1.0080

0.8 1.0178 1.0178 1.0156 1.0156 1.0151 1.0151 1.0149 1.0149 1.0149 1.0149 1.0142

1.0 1.0277 1.0276 1.0243 1.0242 1.0235 1.0234 1.0232 1.0231 1.0232 1.0231 1.0221

2.0 1.1065 1.1058 1.0940 1.0933 1.0908 1.0902 1.0898 1.0892 1.0897 1.0892 1.0854

3.0 1.2268 1.2239 1.2011 1.1987 1.1946 1.1924 1.1925 1.1903 1.1924 1.1902 1.1825

4.0 1.3776 1.3711 1.3368 1.3313 1.3264 1.3212 1.3230 1.3179 1.3229 1.3178 1.3055

5.0 1.5501 1.5389 1.4932 1.4836 1.4786 1.4694 1.4739 1.4649 1.4737 1.4647 1.4474
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hinged–hinged beam. Again, for this beam configuration also, the values of lf, for M ¼ 0 for b ¼ 25–500 and
for b-N are matching very well with the values given in Refs. [15,17], respectively.

Tables 3 and 4 give the ratios of oNL=oL, for the hinged–hinged and clamped–clamped shear flexible
uniform beams, obtained in the present work for several values of amplitude and slenderness ratios. As has
already been mentioned that these values are independent of M. The same results from Ref. [18] are included
in these tables for the sake of comparison, and the agreement of the values of oNL=oL is good, for various
values of the amplitude and slenderness ratios, qm and b, respectively.

8. Conclusions

Coupled displacement field method is applied in this paper, to study the large amplitude free vibration
behaviour of uniform shear flexible hinged–hinged and clamped–clamped beams with a centrally placed point
concentrated mass. In general the method used in this paper in conjunction with the classical energy method
reduces the number of undetermined coefficients involved in the admissible function for the lateral
displacement and the total rotation from ‘2n’ to ‘n’ and hence reduces the computational effort to solve the
coupled nonlinear temporal equations, for the studies made on the fundamental frequency, which is an
important design parameter. When suitable single term admissible functions for the total rotation and the
lateral displacement are used the number of nonlinear temporal equations are reduced from two to one in the
present method. This equation can effectively be solved using the harmonic balance method to obtain simple
and accurate closed-form solutions for obtaining the ratios of nonlinear to linear radian frequencies as a
function of the slenderness, mass and maximum amplitude ratios.

From a careful study of the numerical results, obtained from the present study, given in the digital form, for
both the hinged–hinged and clamped–clamped beams with a central point concentrated mass, the following
major conclusions can be arrived at.
1.
 The ratios of the nonlinear to linear radian frequencies are independent of the mass ratio, which is an
unanticipated interesting phenomenon.
2.
 The effect of the point concentrated mass is to reduce the linear frequency parameter and this reduction is
very significant up to the values of the point concentrated mass equal to the beam mass.
3.
 This effect is more severe in the case of the clamped-clamped beam compared to the hinged–hinged beam.

4.
 Comparision of the present results, wherever possible, for the first mode of vibration, with those available

in the open literature shows that the coupled displacement field method gives accurate values for the linear
fundamental frequency parameter and the ratios of nonlinear to linear radian frequencies.
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